Թեմա՝ երկու անհայտով առաջին աստիճանի հավասարումներ։

ax+by+c=0                                            (1)

տեսքի հավասարումը, որտեղ a, b, c-ն տված թվեր են, ընդ որում a և b թվերից գոնե մեկը տարբեր է զրոյից, իսկ x-ը և y-ը անհայտներ են, անվանում են x և y երկու անհայտով առաջին աստիճանի հավասարում:

Այդ անվանումը կապված է նրա հետ, որ (1) հավասարման ձախ մասը x և y-ի նկատմամբ առաջին աստիճանի կատարյալ տեսքի բազմանդամ է:

a և b թվերն անվանում են անհայտի գործակիցներ, a թիվը՝ x-ի գործակից, իսկ b թիվը՝ y-ի գործակից:

ax, by, c  արտահայտություններն անվանում են (1) հավասարման անդամներ: Ընդ որում c թիվն անվանում են ազատ անդամ:

(x0,y0)թվազույգն անավանում են (1) հավասարման լուծում, եթե այդ թվերը բավարարում են (1) հավասարմանը, այսինքն՝ x-իփոխարեն տեղադրելով x0, իսկ y-ի փոխարեն y0`հավասարումը վերածվում է ճիշտ թվային հավասարության՝

                                 ax0+by0+c=0:

            ax+by+c=0 , որտեղ b հավասար չէ 0                                 (2)

տեսքի ցանկացած հավասարում ունի անթիվ բազմության լուծումներ, որովհետև x-ի համար կարող ենք վերցնել ցանկացած xարժեք, և հավասարումը լուծելով  y անհայտի նկատմամբ կգտնենք 

                            y0=(-c-ax0)/b :

(x0, y0) թվազույգը կլինի (2) հավասարմանլուծում:

Քանի որ x0 թվերը անվերջ շատ են, ապա և (2) հավասարման լուծումները անվերջ շատ կլինեն:

x և yերկու անհայտով տված հավասարումից y-ըարատահայտել x-ով՝ նշանակում է լուծել այդ հավասարումը y-ի նկատմամբ ղ-ի ցանկացած տված արժեքի համար:

Օրինակ

                      2x-5y+2=0                    (3)

հավասարումից y-ը արատահայտենք x-ով և գրենքայդ հավասարման բոլոր լուծումները:

Համարենք x-ը կամայական թիվ է, y-ը անհայտն է և լուծենք(3) հավասարումը:

                                          2x+2=5y

                                          5y=2x+2

                                     y=2/5x+2/5                        (4)

Այսպիսով, (3) հավասարման բոլոր լուծումները կլինեն (x;2/5x+2/5) տեսքի, որտեղ x-ը ցանկացած թիվ է:

Դատելով նման կերպ՝ կստանանք, որ 

ax+by+c=0, որտեղ a0տեսքի հավասարումները ունեն անվերջ թվով լուծումներ: Բոլոր այդ լուծումները գրվում են

(-c-by)/a; y) տեսքով, որտեղ y-ը ցանկացած թիվ է:

Առաջադրանքներ

1․ ա) Ո՞ր հավասարումն են անվանում երկու անհայտով առաջին աստիճանի հավասարում: Բերեք օրինակներ:
 

բ) Ի՞նչն են անվանում ax+by+c=0 հավասարման լուծում, որտեղ a և b գործակիցներից գոնե մեկը հավասար չէ զրոյի:

2․ Քանի՞ լուծում ունի x-y+1=0 հավասարումը:

3․ Տրված a, b, c թվերով կազմեք առաջին աստիճանի երկու անհայտով հավասարում.

ա) a=5, b=4, c=-2;
բ) a=0, b=-3, c=4;
գ) a=0, b=2, c=-1;
դ) a=-5, b=-1, c=0:

4․Պարզել  x−2y+5=0 երկու անհայտներով գծային հավասարման a, b և c գործակիցները:

5․ Ցույց տալ, որ (1;-1), (5;-7), (-3; 5) թվազույգերը 3x+2y-1=0 հավասարման լուծումներն են:

6․ 8x+4y−8=0 գծային հավասարման մեջ որոշել x=0 արժեքին համապատասխանող y-ի արժեքը:

7․ 13x+5y=26 գծային հավասարման մեջ գտնել y=0 արժեքին համապատասխանող x -ի արժեքը:

8․Տրված է երկու փոփոխականներով 3x−7y+22=0 գծային հավասարումը: Օգտագործելով այն` արտահայտել x  փոփոխականը մյուս փոփոխականի՝ y-ի միջոցով:

9․ Որոշել ax+8y=20 հավասարման a գործակցի արժեքը, եթե հայտնի է, որ (−4;−4) թվազույգը այդ հավասարման լուծում է:

10․ x+2y−24=0 հավասարման լուծումներից գտնել այնպիսի թվազույգ, որի թվերից առաջինը 2 անգամ մեծ է երկրորդից:

Պարապմունք 1

Թեմա՝ Կրկնողություն

1. Հաշվել
ա) 33 = 27
բ) 82 = 64
գ) 64 = 1296
դ) 12000 = 1

2. Գրել ցուցչային տեսքով՝
ա) 2 ⋅ 2 ⋅ 2 = 23
բ) 5 ⋅ 5 ⋅ 5 ⋅ 5 ⋅ 5 ⋅ 5 = 56
գ) 23 ⋅ 2 ⋅ 2 = 25

3. Գրել 10 աստիճանի  տեսքով՝
ա) հարյուր հազար = 105
բ) մեկ միլիոն = 106
գ) մեկ միլիարդ = 109

5. Հաշվել 103 և 62 թվերի արտադրյալը։
103 x 62 = 1000 x 36

6. Համեմատել
ա) 230 և 231 թվերը — 230 < 231
բ) 710 և 910 թվերը — 710 < 910

7․ 5, 2, −5 թվերից որո՞նք են հետևյալ հավասարման լուծումները.
ա) x — 2 = 0
x = 2

բ) 2x -10  = 0
5

գ) 3x + 15 = 0
x = -5

8. –3, 12, 1, –5 թվերից որո՞նք են նշված հավասարման լուծում.
ա) x + 3 = 0
x = -3

բ) 2x – 25 = –1
x = 12

գ) 3y + 10 = 1
x = -3

դ) 5y + 7 = 2 (y – 1) + 12
x = 1

9. Ուղղանկյան պարագիծը 48 սմ է։ Գտնել ուղղանկյան կից կողմերի գումարը։
48 : 2 = 24

10․ Դպրոցի երկու դասարանում կա 54 սովորող, ընդ որում ՝ մի դասարանում մյուսից 4 սովորողով ավելի։ Քանի՞ սովորող կա դասարաններից յուրաքանչյուրում։
54 — 4 = 50
50 : 2 = 25 (I դասարան)
25 + 4 = 29 (II դասարան)