Պարապմունք 3

Թեմա՝ Երկու անհայտով առաջին աստիճանի հավասարումներ։

Առաջադրանքներ։

1․ Որոշիել ax+8y=20 հավասարման a գործակցի արժեքը, եթե հայտնի է, որ (−4;−4) թվազույգը այդ հավասարման լուծում է:

2․ Տված հավասարումներից y-ը արտանայտել x-ով:

ա) 2x+y=6
բ) 3x+y=7
գ) x+y-8=12
դ) y+2=6x
ե) 3x+2y=9
զ) -4x+2y=13

3․ Տված հավասարումներից x-ը արտանայտել y-ով:

ա) x-y+5=0
բ) 2x-3y+9=0
գ)15x+y-8=0
դ) x+3y-15=0
ե) 7x+y=6
զ) -4x+y=-19

Պարապմունք 2

Թեմա՝ Երկու անհայտով առաջին աստիճանի հավասարումներ։

ax+by+c=0                                            (1)

տեսքի հավասարումը, որտեղ a, b, c-ն տված թվեր են, ընդ որում a և b թվերից գոնե մեկը տարբեր է զրոյից, իսկ x-ը և y-ը անհայտներ են, անվանում են x և y երկու անհայտով առաջին աստիճանի հավասարում:

Այդ անվանումը կապված է նրա հետ, որ (1) հավասարման ձախ մասը x և y-ի նկատմամբ առաջին աստիճանի կատարյալ տեսքի բազմանդամ է:

a և b թվերն անվանում են անհայտի գործակիցներ, a թիվը՝ x-ի գործակից, իսկ b թիվը՝ y-ի գործակից:

ax, by, c  արտահայտություններն անվանում են (1) հավասարման անդամներ: Ընդ որում c թիվն անվանում են ազատ անդամ:

(x0,y0)թվազույգն անավանում են (1) հավասարման լուծում, եթե այդ թվերը բավարարում են (1) հավասարմանը, այսինքն՝ x-իփոխարեն տեղադրելով x0, իսկ y-ի փոխարեն y0`հավասարումը վերածվում է ճիշտ թվային հավասարության՝

                                 ax0+by0+c=0:

            ax+by+c=0 , որտեղ b հավասար չէ 0                                 (2)

տեսքի ցանկացած հավասարում ունի անթիվ բազմության լուծումներ, որովհետև x-ի համար կարող ենք վերցնել ցանկացած xարժեք, և հավասարումը լուծելով  y անհայտի նկատմամբ կգտնենք 

                            y0=(-c-ax0)/b :

(x0, y0) թվազույգը կլինի (2) հավասարմանլուծում:

Քանի որ x0 թվերը անվերջ շատ են, ապա և (2) հավասարման լուծումները անվերջ շատ կլինեն:

x և yերկու անհայտով տված հավասարումից y-ըարատահայտել x-ով՝ նշանակում է լուծել այդ հավասարումը y-ի նկատմամբ ղ-ի ցանկացած տված արժեքի համար:

Օրինակ

                      2x-5y+2=0                    (3)

հավասարումից y-ը արատահայտենք x-ով և գրենքայդ հավասարման բոլոր լուծումները:

Համարենք x-ը կամայական թիվ է, y-ը անհայտն է և լուծենք(3) հավասարումը:

                                          2x+2=5y

                                          5y=2x+2

                                     y=2/5x+2/5                        (4)

Այսպիսով, (3) հավասարման բոլոր լուծումները կլինեն (x;2/5x+2/5) տեսքի, որտեղ x-ը ցանկացած թիվ է:

Դատելով նման կերպ՝ կստանանք, որ 

ax+by+c=0, որտեղ a0տեսքի հավասարումները ունեն անվերջ թվով լուծումներ: Բոլոր այդ լուծումները գրվում են

(-c-by)/a; y) տեսքով, որտեղ y-ը ցանկացած թիվ է:

Առաջադրանքներ

1․ ա) Ո՞ր հավասարումն են անվանում երկու անհայտով առաջին աստիճանի հավասարում: Բերեք օրինակներ:
ax+by+c=0     տեսքի հավասարումը, որտեղ a, b, c-ն տված թվեր են, ընդ որում a և b թվերից գոնե մեկը տարբեր է զրոյից, իսկ x-ը և y-ը անհայտներ են, անվանում են x և y երկու անհայտով առաջին աստիճանի հավասարում:
3x-1y=5

5x+2y=12


 բ) Ի՞նչն են անվանում ax+by+c=0 հավասարման լուծում, որտեղ a և b գործակիցներից գոնե մեկը հավասար չէ զրոյի:
(x0,y0)թվազույգն անավանում են (1) հավասարման լուծում, եթե այդ թվերը բավարարում են (1) հավասարմանը, այսինքն՝ x-իփոխարեն տեղադրելով x0, իսկ y-ի փոխարեն y0`հավասարումը վերածվում է ճիշտ թվային հավասարության՝
2․ Քանի՞ լուծում ունի x-y+1=0 հավասարումը:
Անթիվբազմության լուծումներ։

3․ Տրված a, b, c թվերով կազմեք առաջին աստիճանի երկու անհայտով հավասարում.

ա) a=5, b=4, c=-2;
5x+4y=-2
բ) a=0, b=-3, c=4;
-3y=4
գ) a=0, b=2, c=-1;
2y=-1
դ) a=-5, b=-1, c=0:
-5x-y=0
4․Պարզել  x−2y+5=0 երկու անհայտներով գծային հավասարման a, b և c գործակիցները:
a=1, b=-2, c=-5

5․ Ցույց տալ, որ (1;-1), (5;-7), (-3; 5) թվազույգերը 3x+2y-1=0 հավասարման լուծումներն են:
3*1+2*(-1)-1=0
3*5+2*(-7)-1=0
3*(-3)+2*5-1=0

6․ 8x+4y−8=0 գծային հավասարման մեջ որոշել x=0 արժեքին համապատասխանող y-ի արժեքը:
4y-8=0
4y=8

y=2

7․ 13x+5y=26 գծային հավասարման մեջ գտնել y=0 արժեքին համապատասխանող x -ի արժեքը:
13x=26
x=2

8․Տրված է երկու փոփոխականներով 3x−7y+22=0 գծային հավասարումը: Օգտագործելով այն` արտահայտել x  փոփոխականը մյուս փոփոխականի՝ y-ի միջոցով:
3x=7y-22

x=(7y-22)/3

9․ Որոշել ax+8y=20 հավասարման a գործակցի արժեքը, եթե հայտնի է, որ (−4;−4) թվազույգը այդ հավասարման լուծում է:
-4a-32=20
-4a=20+32
-4a=52
a=-13

10․ x+2y−24=0 հավասարման լուծումներից գտնել այնպիսի թվազույգ, որի թվերից առաջինը 2 անգամ մեծ է երկրորդից:
(12;6)